


Figures 10-19. 10-11, Ostrea gillulyi; 12-15, Gyrodes johnsoni; 16-18, Nucula weldensis: 19, Anchura? forresteri

Figures 16-18. Nucula weldensis Reeside, n. sp., right, posterior, and top views (×2) of the type, a complete shell. Same locality as Figs. 7-9. (p. 307.)

Figure 19. Anchura? forresteri Reeside, n. sp., plaster cast from the type, a mould from the basal part of the beds of Colorado age at Black Bluff, Utah. (p. 310.)

RADIOGEOLOGY.—The radium content of Stone Mountain granite.<sup>1</sup>
Charles Snowden Piggot, Geophysical Laboratory, Carnegie Institution of Washington.

This paper refers to the first measurements by the author, of what is intended to be a comprehensive study of the radium content of the various classes of rocks of the Earth's structure. It is of a preliminary and introductory nature only. A paper describing in detail the apparatus and technique used and the results obtained from a study of several rocks will be published shortly.

## DESCRIPTIVE

The sample used was a gray biotite-muscovite granite from Stone Mountain, Georgia, and was a part of the same block as used by Day, Sosman and Hostetter<sup>2</sup> in their determination of densities at high temperatures.

The density of this material at 25° is 2.633 and the chemical composition as determined by Packard³ is as follows:

## Analysis, Norm, and Mode of Stone Mountain Granite

| $SiO_2$                        |                                                  |
|--------------------------------|--------------------------------------------------|
| $Al_2O_3$                      |                                                  |
| Fe <sub>2</sub> O <sub>3</sub> | 0.86                                             |
| FeO                            |                                                  |
| MgO                            | 0.17                                             |
| CaO                            |                                                  |
| Na <sub>2</sub> O              | 4.66                                             |
| $K_2O$                         | 4.92                                             |
| H <sub>2</sub> O+              | 1.00                                             |
| NORM <sup>3</sup>              | MODE <sup>4</sup>                                |
| Quartz 22.80                   | Quartz 20                                        |
| Orthoclase                     | Microcline                                       |
| Albite 39.30                   | Plagioclase Ab <sub>85</sub> An <sub>15</sub> 30 |
| Anorthite 5.28                 | Mica, nearly all muscovite 10                    |
| Corundum 1.12                  |                                                  |
| Hypersthene 1.72               |                                                  |

<sup>&</sup>lt;sup>1</sup> Received March 14, 1928.

<sup>&</sup>lt;sup>2</sup> ARTHUR L. DAY, R. B. SOSMAN and J. C. HOSTETTER. Am. Journ. Sci. **37**: 1-39. 1914. Also Neues Jahrb. Beil. Bd. **40**: 119-162. 1915.

<sup>&</sup>lt;sup>3</sup> H. S. Washington. *Chemical analyses of igneous rocks*. U. S. Geol. Survey, Prof. Paper **99**: Analysis No. 51, p. 173. 1917.

<sup>&</sup>lt;sup>4</sup> L. H. Adams and E. D. Williamson. The compressibility of minerals and rocks at high pressures. Journ. Frank. Inst. 195: 483. 1923.